In unsecured communications settings, ascertaining the trustworthiness of received information, called authentication, is paramount. We consider keyless authentication over an arbitrarily-varying channel, where channel states are chosen by a malicious adversary with access to noisy versions of transmitted sequences. We have shown previously that a channel condition termed U-overwritability is a sufficient condition for zero authentication capacity over such a channel, and also that with a deterministic encoder, a sufficiently clear-eyed adversary is essentially omniscient. In this paper, we show that even if the authentication capacity with a deterministic encoder and an essentially omniscient adversary is zero, allowing a stochastic encoder can result in a positive authentication capacity. Furthermore, the authentication capacity with a stochastic encoder can be equal to the no-adversary capacity of the underlying channel in this case. We illustrate this for a binary channel model, which provides insight into the more general case.


Allison Beemer

New Jersey Institute of Technology

Eric Graves

U.S. Army Research Laboratory

Paul Yu

U.S. Army Research Laboratory

Oliver Kosut

Arizona State University

Jörg Kliewer

New Jersey Institute of Technology

Session Chair

Matthieu Bloch

Georgia Institute of Technology